入学前プログラム数学添削問題の準備 4回目

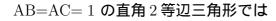
4 三角比

三平方の定理 ∠A= 90° の直角三角形

△ABC では辺の長さの間に

$$AB^2 + AC^2 = BC^2$$

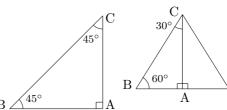
が成り立ちます.



$$BC^2 = 1^2 + 1^2 = 2$$

となり BC = $\sqrt{2}$ がわかります.

一辺の長さが1の正三角形の頂角を

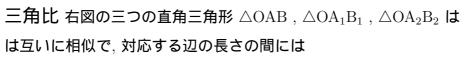


2 等分してえられる直角三角形 ABC を考えます . BC=1 , $AB=rac{1}{2}$ ですから,

三平方の定理により

$$1^2 = AC^2 + \left(\frac{1}{2}\right)^2$$
 , $AC^2 = \frac{3}{4}$

となり $AC = \frac{\sqrt{3}}{2}$ がわかります.



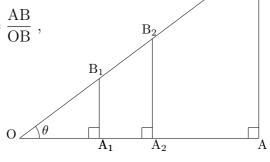
$$\begin{split} \frac{\mathrm{OA}_1}{\mathrm{OB}_1} &= \frac{\mathrm{OA}_2}{\mathrm{OB}_2} = \frac{\mathrm{OA}}{\mathrm{OB}} \;, \quad \frac{\mathrm{A}_1\mathrm{B}_1}{\mathrm{OB}_1} = \frac{\mathrm{A}_2\mathrm{B}_2}{\mathrm{OB}_2} = \frac{\mathrm{AB}}{\mathrm{OB}} \;, \\ \mathrm{A}_1\mathrm{B}_1 & \mathrm{A}_2\mathrm{B}_2 & \mathrm{AB} \end{split}$$

$$\frac{A_1B_1}{OA_1} = \frac{A_2B_2}{OA_2} = \frac{AB}{OA}$$

が成り立っています.このように

角の大きさ θ だけで定まる直角三角形の

辺の長さの比を



$$\cos \theta = \frac{OA}{OB}$$
 , $\sin \theta = \frac{AB}{OB}$, $\tan \theta = \frac{AB}{OA}$... (I)

と表わし. それぞれ コサイン, サイン, タンジェント と読む, というのが三角比 の定 義でした.

先に挙げた2つの直角三角形の例から

$$\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}} \; , \; \tan 45^\circ = 1 \; , \quad \cos 60^\circ = \frac{1}{2} \; , \; \sin 60^\circ = \frac{\sqrt{3}}{2} \; , \; \tan 60^\circ = \sqrt{3}$$

がわかります.

相互の関係 (I) から $OA = OB \cos \theta$, $AB = OB \sin \theta$ となるので

$$\tan \theta = \frac{OB \sin \theta}{OB \cos \theta} = \frac{\sin \theta}{\cos \theta} ,$$

また三平方の定理 $OB^2=OA^2+AB^2$ に代入して ($\sin^2\theta=(\sin\theta)^2,\,\cos^2\theta=(\cos\theta)^2$ として)

$$OB^2 = OB^2(\cos \theta)^2 + OB^2(\sin \theta)^2$$
, $1 = \cos^2 \theta + \sin^2 \theta$

が成立します. また $\angle OBA = 90^{\circ} - \theta$ だから

$$\cos\left(90^{\circ}-\theta\right) = \frac{\mathrm{OB}}{\mathrm{AB}} = \sin\theta \; , \; \sin\left(90^{\circ}-\theta\right) = \frac{\mathrm{OA}}{\mathrm{OB}} = \cos\theta \; , \; \tan\left(90^{\circ}-\theta\right) = \frac{\mathrm{OA}}{\mathrm{AB}} = \frac{1}{\tan\theta}$$

が成りたちます. まとめておくと

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 , $\cos^2 \theta + \sin^2 \theta = 1$,

$$\cos(90^{\circ} - \theta) = \sin\theta \quad , \quad \sin(90^{\circ} - \theta) = \cos\theta \quad , \quad \tan(90^{\circ} - \theta) = \frac{1}{\tan\theta} \ .$$

鈍角の三角比 $90^{\circ} < \theta \le 180^{\circ}$ の場合は、右図のように

頂点がy軸の左にくると考えて

$$\cos \theta = -\cos(180^\circ - \theta)$$
 , $\sin \theta = \sin(180^\circ - \theta)$ $\frac{\theta}{180^\circ - \theta}$ $\frac{\theta}{180^\circ - \theta}$

とします. 例えば

$$\cos 120^\circ = -\cos 60^\circ = -\frac{1}{2}$$
, $\sin 120^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$, $\tan 120^\circ = \frac{\sin 120^\circ}{\cos 120^\circ} = -\sqrt{3}$.

例題 $0^{\circ} \le \theta \le 90^{\circ}$, $\tan \theta = p$ のとき $\cos \theta$, $\sin \theta$ を p で表わしなさい.

(解)
$$\frac{\sin \theta}{\cos \theta} = p$$
 から $\sin \theta = p \cos \theta$. これを $\cos^2 \theta + \sin^2 \theta = 1$ に代入して

$$(1+p^2)\cos^2\theta = 1$$
 , $\cos^2\theta = \frac{1}{1+p^2}$.

平方根をとって $\cos\theta=\pm\frac{1}{\sqrt{1+p^2}}$ をえるが, $0^\circ \le \theta \le 90^\circ$ より $\cos\theta \ge 0$ なので

$$\cos \theta = \frac{1}{\sqrt{1+p^2}}$$
 . $\sin \theta = p \cos \theta$ にこれを代入して $\sin \theta = \frac{p}{\sqrt{1+p^2}}$.

数学添削問題 第4回

氏名:_____

高校名:_____

入学予定学科:_____

1 次の値を求めなさい.

(1) $\cos 30^{\circ}$ (2) $\sin 30^{\circ}$ (3) $\tan 30^{\circ}$ (4) $\cos 150^{\circ}$

(5) $\sin 150^{\circ}$ (6) $\tan 150^{\circ}$ (7) $\cos 135^{\circ}$ (8) $\sin 135^{\circ}$

(9) $\cos 0^{\circ}$ (10) $\sin 0^{\circ}$ (11) $\tan 0^{\circ}$ (12) $\cos 180^{\circ}$

 $\boxed{2}\ 90^\circ < heta < 180^\circ \;, \, \sin \theta = rac{3}{5} \;$ のとき $\cos \theta \;, \; \tan \theta \;$ の値を求めなさい .

 $3 \sin \theta + \cos \theta = \sqrt{2}$ のとき $\cos \theta$, $\sin \theta$, $\tan \theta$ の値を求めなさい(ヒント: $\cos \theta = \sqrt{2} - \sin \theta$ を用いて,相互関係 $\cos^2 \theta + \sin^2 \theta = 1$ から $\cos \theta$ を消去する)

4 $\triangle ABC$ において、AB=BC=2 、 $\angle ABC=120^\circ$ であるとき、辺 AC の長さと $\triangle ABC$ の面積を求めなさい.

 $50^\circ < \theta < 180^\circ$ のとき $2\sin^2 \theta + \cos \theta = 1$ をみたす θ を求めなさい.

数学問題第4回アンケート(必要事項を記入し、ご回答下さい。)

		氏	名:				
		自宅住	所:				
		高校	名:				
(1) 今回の問題で感じた難易度を聞かせてください.							
問1	1. 難しい	2. やや難しい	3.標準	4.易しい	5.とても易しい		
問 2	1. 難しい	2. やや難しい	3.標準	4.易しい	5.とても易しい		
問3	1. 難しい	2. やや難しい	3.標準	4.易しい	5.とても易しい		
問4	1. 難しい	2. やや難しい	3.標準	4.易しい	5.とても易しい		
問 5	1. 難しい	2. やや難しい	3.標準	4.易しい	5.とても易しい		
,	<i>'</i>	ご覧になりましたか ことができた ::		った			
3	.2の場合の理	曲()				
(3	3) 問題を解く」	こでビデオは					
1.	参考になった	2.普通 3	. 参考になら	なかった			

裏面に続きます。

(4)	今回の添削問題に関す	する質問を以下にお書きください.	
(5)	今回の添削問題に関す	する感想を以下にお書きください。	•

★アンケートにご協力頂きありがとうございました。