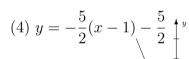
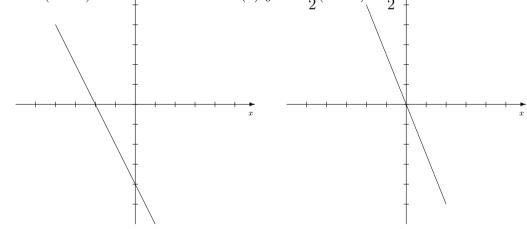
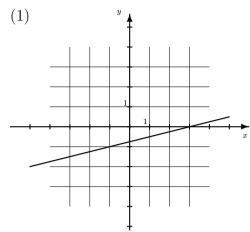
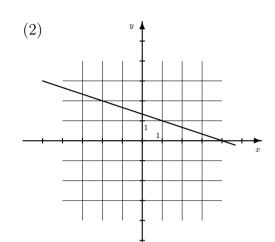

数学添削問題 第1回 解答


1 次の1次関数のグラフを描きなさい.


(1) y = 2x + 3


(3) $y = -2(x+1) - 2 \int_{-y}^{y}$



2 次の直線を表わす1次関数を求めなさい.

(ヒント: x, y 座標が整数になる点をみつける)

 (\mathbf{R}) 点 (-1,-1), (3,0) を通る.

$$y = \frac{0 - (-1)}{3 - (-1)}(x - 3), y = \frac{1}{4}x - \frac{3}{4}$$

 (\mathbf{M}) 点 (-2,2), (1,1) を通る.

$$y = \frac{0 - (-1)}{3 - (-1)}(x - 3), \ \underline{y = \frac{1}{4}x - \frac{3}{4}}$$
 $y = \frac{2 - 1}{-2 - 1}(x - 1) + 1, \ \underline{y = -\frac{1}{3}x + \frac{4}{3}}$

- ③ 直線 y = -3x + 2 について、次の問いに答えなさい.
 - (1) この直線をy 軸方向に -3 平行移動してできる直線の式を求めなさい.
 - (2) この直線をx 軸方向にどれだけ平行移動すると(1) の直線に一致するでしょうか.
 - (解) (1) y = -3x + 2 + (-3), y = -3x 1
 - (2) y = -3(x-p) + 2, y = -3x + 3p + 2, 3p + 2 = -1, p = -1
 - -1 平行移動
- 4 直線 y=2x-4 について、次の問いに答えなさい.
 - (1) x 軸について対称な直線の式を求めなさい.
 - (2) y 軸について対称な直線の式を求めなさい.
 - (3) 原点について対称な直線の式を求めなさい.
 - $(\mathbf{f})(1)$ 点 (2,0), (0,4) を通る . y=-2x+4
 - (2) 点 (-2,0), (0,-4) を通る . y=-2x-4
 - (3) 点 (-2,0), (0,4) を通る . y=2x+4
- |5|直線 y=ax (a>0) が, x 軸と直線 y=-2x がつくる角を原点で 2 等分しています . a の値を求めなさ \mathbf{N} . (ヒント: グラフを描き線対称となる点をとって調べる)
 - (解) 直線 y=-2x 上に点 $\mathrm{A}(-1,2),\,x$ 軸上に 点 $\mathrm{B}(\sqrt{5},0)$ をとると原点 O からの距

離はともに
$$OA = OB = \sqrt{5}$$
. 原点と AB の中点 $\left(\frac{-1+\sqrt{5}}{2},1\right)$ を通ればよい .

$$y = \frac{\sqrt{5} + 1}{2}x$$

数学添削問題 第2回 解答

|1|次の2次方程式を因数分解により解きなさい.

(1)
$$x^2 - 13x + 36 = 0$$
 (2) $x^2 + 2x - 48 = 0$

$$(2) x^2 + 2x - 48 = 0$$

(3)
$$2x^2 + 5x + 2 = 0$$
 (4) $6x^2 + x - 15 = 0$

$$(4) 6x^2 + x - 15 = 0$$

(解答)
$$(1)(x-4)(x-9)=0$$
, (解) 4, 9

(2)
$$(x-6)(x+8) = 0$$
, (**M**) 6 , -8

(3)
$$(2x+1)(x+2) = 0$$
, $(\mathbf{R}) - \frac{1}{2}$, -2

$$(4) (2x-3)(3x+5) = 0, (\mathbf{fi}) \frac{2}{3}, -\frac{5}{3}$$

2次の2次方程式を $(x+p)^2=k$ の形にして解きなさい.

(1)
$$x^2 + 4x - 3 = 0$$

(1)
$$x^2 + 4x - 3 = 0$$
 (2) $x^2 - 6x + 1 = 0$

(3)
$$2x^2 + 3x + 1 = 0$$
 (4) $x^2 + 5x + 2 = 0$

$$(4) x^2 + 5x + 2 = 0$$

(解答) (1)
$$(x+2)^2 = 7$$
, $(\mathbf{M}) - 2 \pm \sqrt{7}$
(2) $(x-3)^2 = 8$, $(\mathbf{M}) 3 \pm 2\sqrt{2}$

$$(2) (x-3)^2 = 8$$
, (**M**) $3 \pm 2\sqrt{2}$

(3)
$$x^2 + \frac{3}{2}x + \frac{1}{2} = 0$$
, $\left(x + \frac{3}{4}\right)^2 = \frac{1}{16}$, $(\mathbf{R}) - \frac{1}{2}$, -1

$$(4) \left(x + \frac{5}{2}\right)^2 = \frac{17}{4} , (\cancel{\textbf{m}}) \frac{-5 \pm \sqrt{17}}{2}$$

③ 次の2次方程式を解きなさい.

$$(1) 6x^2 + x - 1 = 0$$

(1)
$$6x^2 + x - 1 = 0$$
 (2) $\frac{3}{4}x^2 - 9x + 6 = 0$

$$(3) \ 3x^2 - 3\sqrt{3}x + 2 = 0$$

(3)
$$3x^2 - 3\sqrt{3}x + 2 = 0$$
 (4) $100x^2 - 25x + 1 = 0$

(解答) (1)
$$(3x-1)(2x+1) = 0$$
, (解) $\frac{1}{3}$, $-\frac{1}{2}$

(2)
$$x^2 - 12x + 8 = 0$$
, $(\mathbf{R}) 6 \pm 2\sqrt{7}$

$$(3) \frac{3\sqrt{3} \pm \sqrt{27 - 24}}{2 \cdot 3}, \underbrace{(\cancel{\textbf{pt}}) \ 6 \pm 2\sqrt{t}}_{3}, \underbrace{\sqrt{3}}_{3}, \underbrace{\sqrt{3}}_{3}, \underbrace{\sqrt{3}}_{1}$$

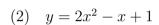
(4)
$$(20x - 1)(5x - 1) = 0$$
, $(\mathbf{R}) \frac{1}{20}$, $\frac{1}{5}$

x の 2 次方程式 $2x^2-4x+a=0$ が $x=1+\sqrt{3}$ を解にもつとき, a の値ともう 1 つの解を求めなさい.

(解答)
$$2(1+\sqrt{3})^2-4(1+\sqrt{3})+a=0$$
 より $a=-4$, (答) $a=-4$, もう 1 つの解 $1-\sqrt{3}$

a を正の整数とするとき, 2 次方程式 $x^2-8x+a+1=0$ の解がすべて整数になるような a の値を求めなさい .

(解答) $(x-4)^2=15-a$ より $x=4\pm\sqrt{15-a}$, 0 以上 15 以下の 15-a が整数の 2 乗になるのは 15-a=0,1,4,9

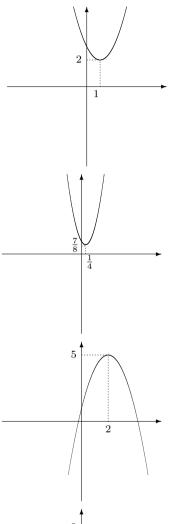

(答)
$$a = 6, 11, 14, 15$$

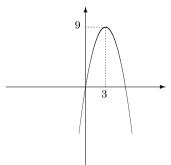
数学添削問題 第3回 解答

① 次の2次関数を $y = a(x-p)^2 + q$ の形になおしてグラフを描きなさい.

$$(1) \quad y = x^2 - 2x + 3$$

(答)
$$y = (x-1)^2 + 2$$


(答)
$$y = 2\left(x - \frac{1}{4}\right)^2 + \frac{7}{8}$$


$$(3) \quad y = -x^2 + 4x + 1$$

(**答**)
$$y = -(x-2)^2 + 5$$

$$(4) \quad y = -x^2 + 6x$$

(答)
$$y = -(x-3)^2 + 9$$

② 2 次関数 $y=x^2-8x+13$ のグラフをどのように平行移動すると 2 次関数 $y=x^2-4x$ のグラフになるでしょうか .

(解答)
$$y = x^2 - 8x + 13 = (x - 4)^2 - 3$$
, $y = x^2 - 4x = (x - 2)^2 - 4$ を比べる.

(答)
$$x$$
 軸方向に -2 , y 軸方向に -1 平行移動

- ③ グラフが次の条件をみたす2次関数を求めなさい.
 - (1) 頂点が点 (1,-3) で,点 (-1,5) を通る.
 - (2) 頂点の x 座標が 2 で, 2 点 (0,7), (6,13) を通る.
 - (3) 3点(1,-1),(2,1),(3,7) を通る.

(解答)
$$(1)$$
 $y = a(x-1)^2 - 3$ に $x = -1$, $y = 5$ を代入, a を求める.

(答)
$$y = 2(x-1)^2 - 3$$

$$(2)$$
 $y=a(x-2)^2+b$ に $(x,y)=(0,7)$, $(x,y)=(6,13)$ を代入して, a,b の連立方程式を解く .

(答)
$$y = \frac{1}{2}(x-2)^2 + 5$$

$$\overline{(3)\ y = ax^2 + bx + c\ \Box\ (x,y)} = (1,-1)\ , \ (x,y) = (2,1)\ , \ (x,y) = (3,7)\$$
を代入して、 a,b,c の連立方程式を解く .

(答)
$$y = 2x^2 - 4x + 1$$

- $\boxed{4} y = 2x^2 + 4x + 1$ のグラフと次の位置関係にあるグラフをもつ 2 次関数を求めなさい.
 - (1) x 軸に関して対称 (2) 原点に関して対称 (3) 点(1,1) に関して対称

(解答)
$$y = 2x^2 + 4x + 1 = 2(x+1)^2 - 1$$
 の頂点は $(-1, -1)$, 上に開く (下に凸).

(1) 頂点は (-1,1) , 下に開く (上に凸) .

(答)
$$y = -2(x+1)^2 + 1$$

(2) 頂点は (1, -1), 下に開く(上に凸).

(答)
$$y = -2(x-1)^2 + 1$$

(3) 頂点は(3,3),下に開く(上に凸).

(答)
$$y = -2(x-3)^2 + 3$$

数学添削問題 第4回解答

1 次の値を求めなさい.

- (1) $\cos 30^{\circ}$ (2) $\sin 30^{\circ}$ (3) $\tan 30^{\circ}$ (4) $\cos 150^{\circ}$
- (5) $\sin 150^{\circ}$ (6) $\tan 150^{\circ}$ (7) $\cos 135^{\circ}$ (8) $\sin 135^{\circ}$
- (9) $\cos 0^{\circ}$ (10) $\sin 0^{\circ}$ (11) $\tan 0^{\circ}$ (12) $\cos 180^{\circ}$
- (答) (1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{\sqrt{3}}$ (4) $-\frac{\sqrt{3}}{2}$
- (5) $\frac{1}{2}$ (6) $-\frac{1}{\sqrt{3}}$ (7) $-\frac{\sqrt{2}}{2}$ (8) $\frac{\sqrt{2}}{2}$
- (9) 1 (10) 0 (11) 0 (12) -1
- $\boxed{2} \ 90^\circ < \theta < 180^\circ \ , \ \sin\theta = \frac{3}{5} \ \text{のとき} \ \cos\theta \ , \ \tan\theta \ \text{の値を求めなさい} \ .$ $(\textbf{解答}) \ \cos\theta = -\sqrt{1 \left(\frac{3}{5}\right)^2} = -\frac{4}{5} \ , \qquad \underline{(\textbf{答}) \ \cos\theta = -\frac{4}{5} \ , \ \tan\theta = -\frac{3}{4}}$
- $3 \sin \theta + \cos \theta = \sqrt{2}$ のとき $\cos \theta$, $\sin \theta$, $\tan \theta$ の値を求めなさい . (解答) $\sin^2 \theta + (\sqrt{2} \sin \theta)^2 = 1$ より $(\sqrt{2} \sin \theta 1)^2 = 0$ (答) $\sin \theta = \frac{\sqrt{2}}{2}$, $\cos \theta = \frac{\sqrt{2}}{2}$, $\tan \theta = 1$
- $5 \ 0^{\circ} < \theta < 180^{\circ}$ のとき $2\sin^2\theta + \cos\theta = 1$ をみたす θ を求めなさい . (解答) $2(1-\cos^2\theta) + \cos\theta = 1$ より $2\cos^2\theta \cos\theta 1 = 0$, $(2\cos\theta + 1)(\cos\theta 1) = 0$, $\cos\theta = -\frac{1}{2}$ (答) $\theta = 120^{\circ}$

数学添削問題 第5回解答

1 次の式の値を求めなさい.

- (1) $(2^5 \times 4^3) \div (8^3 \times 64)$ (2) $\sqrt[5]{72}\sqrt[5]{108}$
- (3) $4^{\frac{1}{3}} \times 4^{\frac{1}{6}}$ (4) $\sqrt[4]{\sqrt[3]{64^2}}$
- (答) (1) $\frac{1}{16}$ (2) 6 (3) 2 (4) 4

$\boxed{2}$ a>0 のとき次の式を a^p の形に表わしなさい.

- (1)
- $\frac{1}{\sqrt[4]{a^3}} \qquad (2) \qquad \sqrt{\sqrt{a}}$
- (3) $\sqrt[3]{a^2} \div \sqrt[6]{a} \div \sqrt{a}$ (4) $\sqrt{a^4 \times \sqrt{a}}$
- (答) (1) $a^{-\frac{3}{4}}$ (2) $a^{\frac{1}{8}}$ (3) a^{0} (4) $a^{\frac{9}{4}}$

3 次の対数の値を計算しなさい.

- (1) $\log_2 32$ (2) $\log_3 \frac{1}{81}$
- (3) $\log_4 128$ (4) $\log_2 192 \log_2 12$
- (答) (1) 5 (2) 4 (3) 7 (4) 4

$4 \log_{10} 2 = a$, $\log_{10} 3 = b$ とするとき, 次の値を a, b の簡単な式で表わしなさい.

- (1) $\log_{10} 6$ (2) $\log_{10} 48$ (3) $\log_{10} 5$ (4) $\log_2 3$

- (答) (1) a + b (2) 4a + b (3) 1 a $(4) \frac{b}{a}$